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Abstraet--Thermosolutal convection induced by freezing a layer of seawater from above is studied in a 
series of numerical experiments. The model equations take into account the dependence of the density and 
the temperature of maximum density on salt content, the possible presence of penetrative convection and 
supercooling effects. The threshold values for the onset of convection are determined over a wide range of 
parameter space. Two types of cell pattern are predicted by the linear theory : (1) convection of the entire 
fluid cell and (2) multi-layer convection. An attempt is made at quantifying the cabbeling instability 
associated with the onset of the latter. Only multi-layer convection prevails for supercritical Rayleigh 
numbers. For a specific parameter range, a flow pattern consisting of a strongly convecting layer floating 
between two relatively stable layers is found. The numerical experiments seem to imply that penetrative 
convection delays the release of heat to the atmosphere during the formation of polynyas. Copyright © 

1996 Elsevier Science Ltd. 

1. INTRODUCTION 

In the cold regions surrounding the South Pole, a 
complex interplay takes place between ice, oceanic 
convection and the atmosphere. The ice that forms 
during the freezing of the antarctic water acts like an 
insulating barrier that inhibits the release of oceanic 
stored heat into the atmosphere. The major portion 
of this heat comes from the latent heat released during 
ice formation and from absorbed solar radiation. The 
formation of coastal or open-ocean polynyas allows 
for the salty water that underlies the ice to become 
exposed to the frigid atmosphere leading to a surge of 
heat into the surrounding air. The increase in the 
air temperature that ensues may have a significant 
influence on both the local and global energy balance. 
Indeed, amounts of heat on the order of 200 W m -2 
are predicted to escape to the atmosphere through 
these openings according to the calculations of 
Aagaard et al. [1]. The reader is referred to Gordon 
and Comiso [2] and Smith et al. [3] for an extensive 
review of the coupled sea-ice atmosphere system in 
cold climates. This work is mainly aimed at achieving 
a better understanding of the coupled process of freez- 
ing and convection in seawater. 

Before coming to the core of the subject of this 
paper it is useful to consider briefly the freezing of 
fresh water from above. This will provide insight 
which may help in determining the influence of salt 
during the freezing of seawater. Owing to the fact that 
fresh water solidifies at a temperature of 0°C and has 
a density maximum at 4°C, a stable layer, bounded 
by the 0 and 4°C isotherms, forms. This layer overlies 
a deeper layer that is generally convectively unstable 
and can affect the stability of the top layer through 
penetrative convection. This convection phenomenon 

was brought to light, for the first time, by Veronis 
[4] and was later studied by Moore and Weiss [5], 
Mathews [6] and Foster and Harcourt [7]. When an 
opening in the ice layers forms, the exchange of heat 
between the bottom layer and the atmosphere occurs 
through the top layer. Thus, the efficiency of this heat 
transport depends on the vigor of the convective flow 
in this top layer; that is to say, if the layer is nearly 
static, heat will mainly diffuse across it, while if it is 
strongly convecting, it will transport heat more 
efficiently. In the former case, the mode of heat trans- 
fer is slow enough that new ice will very likely form 
before any appreciable amount of heat escapes to the 
atmosphere; while in the latter case, vigorous con- 
vection occupying the fluid over all of its depth will 
transport heat more efficiently leading to a formation 
of a significant positive flux and a delay in the for- 
mation of new ice. In the work we report here, the 
scenario dealing with the formation of a positive heat 
flux in pure water is investigated for the more realistic 
case of seawater. 

The freezing of seawater involves the coupled pro- 
cess of heat and salt transfer, phase transformation 
and natural convection. Even in the absence of freez- 
ing, the interaction between heat and salt diffusion in 
seawater leads to a rich variety of convective motions 
termed double-diffusive. Turner [8] and Schmitt [9] 
have reviewed the development of this important con- 
vection process. Several experimental and numerical 
studies dealing with the freezing of seawater have been 
undertaken. Foster [10] and Farhadieh and Tankin 
[11] have performed experiments to investigate the 
coupling between thermohaline convection and sol- 
idification during the freezing of seawater. The latter 
authors have, in particular, obtained the following 
data which shows the dependence of the freezing tern- 
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NOMENCLATURE 

C salinity TM 
C, concentration at the lower plate T~. 
C~ equilibrium freezing concentration T,n, 
c dimensionless concentration u 

fluctuation w 
D ?:'P: 
Ds coefficient of solutal diffusion [m-" s ~] Greek 
g gravitational constant [m s ~] ~j 
H thickness of the ice layer [m] cr s 
h depth of the stably stratified layer [m] 
Ks thermal conductivity of the solid fi 

[ J m  I s  I K ]] ;' 

KL thermal conductivity of the liquid 0 
[ J m ' s  I K i] t~ 

/ depth of the unstably stratified layer 
[m] h, 

M liquidus slope [ C] )~ 
m dimensionless liquidus slope v 
p pressure [N m -'] I ) ,  
P Prandtl number r 
Rr Rayleigh number (J 
S density ratio 
s growth rate 
T temperature in the mixture [ C] 
Ts temperature in the ice layer [ C] 
T, temperature at the upper plate [ C] 

temperature of maximum density [' C] 
equilibrium freezing temperature [ C] 
solid liquid interface temperature ["C] 
horizontal velocity [m s 7] 
vertical velocity [m s ~]. 

symbols 
coefficient of thermal expansion [ C z] 
coefficient of solutal expansion 
wavenumber 
heat transfer coefficient at the interlace 
penetration factor 
dimensionless temperature fluctuation 
thermal diffusivity in the mixture 
[m 2 s '] 
thermal diffusivity in the solid [m 2 s '] 
density extremum parameter 
kinematic viscosity [m 2 s t] 
reference density [kg m '] 
Lewis number 
stream function. 

Subscripts 
c critical 
L liquid phase 
s, S solid phase. 

perature, T~, and the temperature of maximum 
density, TM, on the salinity in parts per thousand (%.,), 
(salinity, T~, Tu):  (18, - 1.2,0.2), (25, - [.5, - 1.5). 
and (35, - 2 . 0 ,  -3 ,8 ) .  Quadratic polynominal fits for 
TM and Te are plotted in Fig. 1. We note the existence 
of a salinity level, C ~ 25%o, below which Tu > T~. 
and above which Tu < Te. Hence, in the preconvective 
regime, the fluid is unstably stratified over all its depth 
when the salt concentration exceeds 25 (%o). Brewster 

O 

O 

0.0 25.0 50.0 

C 
Fig. 1. Plot of  the quadratic polynominal interpolations for 
the temperature of maximum density ( Tu = 
0.000756C 2 0.275378C-4.9117647) (continuous line) and 
the freezing temperature ( 7",, = - 0.00042C 2 - 0.0247899C- 

0.617647) (dashed line). 

and Gebhart  [12], in their experimental study of the 
effects of supercooling and freezing on natural con- 
vection in seawater, have identified three fluid flow 
regimes in terms of a dimensionless density extremum 
parameter and water supercooling conditions, 
namely, besides the buoyancy force in the water being 
either upward or downward over all the liquid depth ; 
there is also a mixed state in which it is upward in 
some regions of the fluid and downward in others. 
Further, they detect water supercooling at the cold 
surface before the beginning of freezing and discover 
that density extremum effects play an important role 
in heat transfer before freezing at low temperatures. 
Molemaker and Dijkstra [13] have performed an 
analysis on the stability of the boundary layer profiles 
of temperature and salinity that form at the moving 
solid liquid interface during the freezing of seawater 
from above. Their numerical results show the exis- 
tence of a new type of oscillatory instability in a pa- 
rameter range that, according to the calculations of 
Baines and Gill [14], consists only of stationary insta- 
bilities. Their study makes use of realistic boundary 
conditions at the solid liquid interface, but ignores the 
density anomaly of water. Antar  [15, 16] considered 
convection in a mixture whose density varies quad- 
ratically with temperature and linearly with con- 
centration, thus accounting for the density anomaly 
of seawater. He calculated the threshold values for the 
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onset of double-diffusive convection in a parameter 
space that included the thermal and solutal Rayleigh 
numbers and also the Lewis number. 

In the present paper, we analyze penetrative con- 
vection in a layer of seawater underlying sea ice, with 
the overall aim of increasing our understanding of the 
influence of thermohaline convection on the positive 
heat flux that forms during the formation of a poly- 
nya. For  this purpose, a system is considered with the 
geometry of the Rayleigh-Btnard type and consists 
of a Boussinesq dilute salt-water mixture located 
between two plates of infinite horizontal extent. A 
temperature gradient is imposed on the system in such 
a way that an upper portion of the mixture is frozen. 
A simplified model is considered in which the solid- 
liquid interface is assumed nonmobile and non- 
deformable. These assumptions are appropriate for 
two main reasons. The first reason is that the solid- 
liquid boundary movement is on a much longer time 
scale than the convection time scale. The second rea- 
son has to do with the fact that during the formation 
of the solid layer, the morphological instabilities, 
which are associated with the formation of the ice 
layer, are seemingly less important than those due to 
the interaction of thermohaline convection with the 
interface morphology. Indeed, Brewster and Gebhart 
[12] report important information concerning the 
morphology of the solid-liquid phase boundary dur- 
ing the downward freezing of salt water. They have 
observed that the dendritic interface that forms at 
the start of the experiment is smoothed out by the 
convective currents in the liquid, thereby giving way 
to an almost planar interface at the end of the exper- 
iment. These observations seem to support our 
assumption of negligible deformation. In this case, the 
solidified layer plays the role of an upper boundary 
whose thermal conductivity is comparable to that of 
the liquid mixture and in which heat transfer occurs by 
conduction alone. Solute diffusion in the solid phase is 
considered slow enough that it can be ignored. The 
temperature of the solid-liquid interface, which is 
obtained from the idealized phase diagram, depends 
linearly on concentration with slope M < 0, where M 
is the liquidus slope. 

The content and organization of this paper are out- 
lined in the following way. In Section 2, we formulate 
the mathematical description of the system, solve for 
the basic state and derive the governing system for the 
fluctuations. The linear stability analysis is presented 
in Section 3 and the nonlinear results of the numerical 
simulations are described in Section 4. Finally, some 
concluding remarks are given in Section 5. 

The temperature in the ice layer Ts satisfies the heat 
conduction equation 

----~ = xsV 2 Ts- (la) 
Ot 

In the liquid phase, the system evolution is 
described by the following conservation equations for 
momentum, heat, solute and mass, respectively : 

8u Ou du 10p 
- - + U ~ x + W ~ z  +vV2u ( lb) 
8t Po Ox 

¢9w ~3w t~w 1 dp i_vV2w + b t9 (lc) - -  g 

~t + U ~x + W Sz Po 8z Po 

OT c~T c~T 
~3~ +u~x +w~z  = xV2T ( ld) 

~C ~C 8C 
~--~ +u~x  +W-~z = OsV2C (le) 

Ou 8w 
O-x + ~-z = O, (If) 

where u and w are the horizontal and vertical com- 
ponents of the velocity vector field, T is the tern- 
perature in the liquid phase, C is the concentration, p is 
the pressure, P0 is a reference density, v is the dynamic 
viscosity, and x and x s are the thermal diffusion 
coefficients in the liquid and solid phases, respectively ; 
6p represents the density change that is induced by 
temperature and concentration variations and is 
described by the following equation of  state : 

6p = p0[1--~T(T--TM)2+O~s(C--CM)], (2) 

where CM is the concentration at TM, ~T and ~s are the 
thermal and solutal expansion coefficients, respec- 
tively, and Ds is the coefficient of solutal diffusion. 

Next we introduce the boundary conditions that 
supplement equations ( la-f) .  Continuity of tem- 
perature and of the heat flux at the solid-liquid inter- 
face located at z = d yields 

Ts KL OT (3a) T = T s = T ~ n t  K s ~ - z  = az" 

Here K s and KL are the thermal conductivities in 
the solid and liquid phases, respectively, and T~,t is the 
freezing temperature of seawater which depends on 
salt content as follows : 

dTin, 
Tint = MC M = - - ~  (C = 0). (3b) 

2. FORMULATION 

We consider a horizontally unbounded layer of sea- 
water of depth d, confined between two rigid iso- 
thermal plates. See Fig. 2 for a schematic diagram. A 
temperature gradient is imposed on the system in such 
a way that an upper portion of the mixture is frozen. 

The effects due to the rejection of salt upon freezing 
are included in the model through the coupled bound- 
ary condition, equation (3b). The boundary con- 
ditions at the plates located at z -- 0 and z = d +  H, H 
being the thickness of the ice layer, are (cf. Fig. 2) 

T = T B  u = w = 0  T s =  To C = C 0 .  (3c) 
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Fig. 2. Sketch of a layer of seawater underlying a layer of sea-ice of thickness H. The dotted line represents 
the maximum density isotherm which is horizontal in the preconvective regime (middle) and distorted as 
it conforms to the convection pattern (right). The conduction profiles of temperature and concentration 

and associated density profile are shown on the left. 

In the absence of convection, the basic profiles of 
temperature and concentration are linear in the ver- 
tical variable, and are given by 

TM 7;, 
,T(z) = Tu - ( h - z )  - - - -  (4a) 

h 

(6(z) = (" M - ( h - z ) -  d - -  (4b) 

If we let l denote the height of  the stably stratified 
layer, and h the height of  the unstably stratified layer 
(d = / + h ) ,  then the evaluation of  the temperature at 
the ice-water interface, located at z = I + h ,  yields 

, 7 ( l + h )  = T~ = TM + I ( T M  -- T~) (5) 
h 

from which we deduce that 

h T . - T M  
- -= ).. ( 6 )  

/ T M - T ,  

Equation (6) expresses the equality of the heat flux 
in the stably stratified and unstably stratified layers. 
The parameter ,:, is introduced to control the tem- 
perature of  the lower boundary. It also serves to regu- 
late the initial location of  the isotherm corresponding 
to maximum density, i.e. in the preconvective regime, 
the location of  the T~ isotherm can be moved upward 
by increasing the value of  the parameter ).. As 2 ~ 0, 
T~--+ T , ,  so that the TM isotherm approaches the 
lower plate resulting in a stable stratification through- 
out the liquid layer ; and as 2 -+ ,~v, T,, ---, I'M and the 
isotherm of  maximum density coincides with the 
solid liquid interface leading to a situation in which 
the liquid is unstably stratified over all of  its depth. 

The system is made dimensionless by scaling the 
length by the depth h of  the layer that is bounded by 
the lower plate and the Tm isotherm, time by h2/K, 
velocity of  to~h, temperature by the difference 

( Tj, - TM), and concentration by (CB - C~). Upon sub- 
traction of  these mean quantities from the total quan- 
tities in equations (1 a f), we obtain the following gov- 
erning system for convective fluctuations : 

~ t  = V20~ (7a) 

?t 3x ('~z ?x + ?x ~z = V20 ( 7 b )  

+ ~ - ~  = rV2c (7c) 
?t ?x  (?z iOx c x  c z  

V4* = 2 R r ( z -  1) (]0 + RTS=&" --2RTO ?0 (W ¢3X ~_v ' 
(7d) 

where 0 and c are the temperature and concentration 
fluctuations in the liquid, respectively; 0~ is the tem- 
perature deviation in the solid phase and ~ is the 
stream function defined by 

u -  (~z w =  ?x" (7e) 

The dimensionless parameters which appear in 
equations (7) are: the Lewis number r ( ~  1/80 for 
seawater), the thermal Rayleigh number RT, the den- 
sity ratio S and the dimensionless liquidus slope m. 
These are defined as follows : 

Ds o~Tgh3 A T 2 O~sAC A C  
r = " RT -- S . . . .  m = M - -  

h- vh" ,ZTA T 2 A T '  

(8) 

where A T ( > 0) and AC ( < 0) are the temperature and 
concentration differences between the plate and the 
ice seawater interface, respectively. Our model per- 
tains to a situation in which the density ratio S is 
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negative. This is due to the fact that the rejection of 
salt during the freezing process raises the salinity of 
the water layer that is in the vicinity of the sea-ice. 
We have accounted for the sign of the density ratio S 
once and for all in equation (7d). The calculations 
are, henceforth, performed as functions of the mag- 
nitude of S only. In deriving the set of equations (7a- 
d), we have ignored the inertial effects and kept the 
convective nonlinear terms, since the purpose of this 
analysis is to understand the thermal and solutal 
effects rather than the hydrodynamic effects, thus the 
Prandtl number (P ~ 7 for seawater) is not a relevant 
parameter in this analysis. Further, we have neglected 
any changes in the physical properties of seawater 
upon freezing. 

The boundary conditions associated with equations 
(7) are as follows : 

0 s = 0  o n z = l + l / 2 + H / h  (9a) 

O0 00s 
0=0~  3 z =  0-~- o n z =  1+1/2 (9b) 

0 
c = - -  o n z =  1+1/2 (9c) 

m 

0 = c = 0  o n z = 0  (9d) 

= D $ = 0  o n z = 0  a n d z = i + l / 2 .  (9e) 

The governing system can be further simplified as 
follows : the steady form of the heat conduction equa- 
tion in the solid phase, equation (7a), is eliminated 
and its effect incorporated into a set of reformulated 
boundary conditions for the temperature in the liquid 
phase at the solid-liquid interface. Using normal 
modes in the x variable, the solution to the steady 
form of equation (7a) is given by 

0s (x, z) = B sinh [z - (1 + 1/2 + H/h)] exp (to, x) 

(10) 

The two boundary conditions for 0, equations (9b), 
imply 

O(x, 1 + 1/2) = -Bs inb(H/h)  exp (lctx) 

d0 
and ~z(X, 1 + 1/2) = Bcosh(H/h)exp(t~tx), (11) 

where B is an integration constant. The elimination 
of the constant B from equations (11) leads to the 
following radiation boundary for 0 : 

g0 
Oz -coth(H/h)O =--f lO o n z =  1+1/2, 

(12) 

where fl = O(1) is a heat transfer coefficient. 
In the next sections, we will present the results of the 

linear stability analysis and of the nonlinear numerical 
experiments. The neutral stability curves, the flow pat- 
terns and the distributions of temperature and salt 
concentrations depend on five dimensionless par- 

ameters: 2, which is the ratio of the depth of the 
unstably stratified layer to that of the stably stratified 
layer in the preconvective regime, the Rayleigh num- 
ber Rx, the density ratio S (S > 0) ; the liquidus slope 
m and fl which is the solid-liquid interface heat trans- 
fer coefficient. Results are shown for one pair of values 
for fl and m, namely, fl = 1 and m = 1. The influence 
of the variation of m on the flow pattern is discussed 
in Section 4. 

3. LINEAR STABILITY RESULTS 

We neglect the nonlinear terms in the governing 
system, which now consists of equations (7b-d) and 
boundary conditions, equations (9c-e) and equation 
(12). For  the horizontally unbounded fluid layer, we 
consider Fourier modes of the form 

0, c, ~x = [F(z), G(z), H(z)] exp0ex) exp(st), 

(13) 

where ~ is the real horizontal wavenumber and 
s = a + to is the growth rate. For  the case at hand, 
the linear stability analysis will be performed with the 
assumption of exchange of stabilities, i.e. the bifur- 
cation from the motionless basic state is stationary, 
and the marginally stable state corresponds to 
a = 09 = 0. This assumption is validated by the fol- 
lowing argument. Initially, seawater that is right 
beneath the ice is both colder and saltier than the 
deeper water, and consequently both the heat and the 
sat gradients are destabilizing. Therefore, the gradi- 
ents of both diffusing quantities of salt and heat col- 
laborate to amplify any small perturbation in the 
liquid, thus initiating a stationary convective motion. 
The resulting eigenvalue problem takes the form 

(O 2 _ o~2)F(z) + H(z) = 0 (14a) 

"c(O 2 -cx2)G(z) + n(z)  = 0 (14b) 

(0 2 -od)2 H(z) + eZRr(z -  1)F(z) + od R-rSG(z) = O, 

(14c) 

with corresponding boundary conditions 

G = F = H = D H = O ,  o n z = 0 ,  (15a) 

D F =  - f lF ,  G = F / m , H = D H = O ,  o n z = l + l / 2 .  

(15b) 

The eigenvalue problem, which now consists of 
equations (14a-c) and corresponding boundary con- 
ditions, equations (15a, b), is solved by the shooting 
method [17]. Four linearly independent starting 
vectors, each satisfying the boundary conditions at 
z = 1 + 1/2, are chosen. The integration is then per- 
formed using a Runge--Kutta scheme with adaptive 
stepsize control, thus obtaining a set of eight linearly 
independent solutions. The required solutions of the 
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eigenvalue problem can be written as a superposition 
of  these solutions. Upon application of  the matching 
boundary conditions at z = 0, a system of eight linear 
and homogeneous equations for the coefficients is 
obtained. The solvability requirement of  this system 
of equations is the vanishing of  an 8 × 8 determinant. 
The numerical task of  determining the zeros of  the 
determinant is accomplished by using a bisection 
method that is based on Brent's algorithm [18]. The 
root that is of  concern to us is the value of  the Rayleigh 
number, RT, as a function of  the wavenumber ~. The 
minimum of Rv and the corresponding value of  
are the critical Rayleigh number, R~, and the critical 
wavenumber, ~,, for the onset of  convection, respec- 
tively. The knowledge of  these threshold values, and 
their dependence on the remaining pertinent 
parameters, is required in order to understand the 
instability mechanisms of  the top layer. The values 
of  the critical Rayleigh numbers and corresponding 
wavenumbers determined in this fashion as a function 
of  the density ratio S and of the density extremum 
parameter 2 are given in Tables 1 and 2. The desta- 
bilizing effect of  the parameter S is apparent from 
these results. The increase of  the critical Rayleigh 
number with ), has to do with the fact that the depth 
of  the convection layer increases with 2. The wave- 
numbers characterizing the marginal states show 
sharp decrease with increasing S values and a slow 
increase with 2. The computed wavenumbers are not, 
however, very accurate due to the fact that the un- 
imodal marginal curves are flat near their minimum. 

The influence of  salt content and density extremum 
effects on the eigenfunctions of  the linear problem, is 
shown in Fig. 3. The flow pattern portrayed by the 
velocity profiles in Figs (3a-c), show that for S = 0 
and 2 < 1 there is a main cell near the hot plate and 
weak counter-rotating cells near the cold plate. When- 
ever 2 exceeds the value l or S > 0.001, the induced 
vortices disappear leaving the way to one positive cell 
occupying all the fluid layer. We also note that the 
number of  induced vortices increases as ,;~ decreases 
below 1. The temperature and concentration dis- 
tributions also show a sign change for 2 = 0.4 or 

smaller, and no sign change for 2 > 0.6. In the pre- 
convective state, the interface which corresponds to 
the location of  the isotherm of maximum density is 
located at z = l in nondimensional units. At the onset 
of  convection and depending on the parameters 2 and 
S, convection takes place either as one cell over the 
entire liquid layer or as multi-layer convection. In 
the former case, which corresponds to the parameter 
range S > 0.001, the interface has moved up all the 
way to the upper boundary which coincides with the 
sea--ice-liquid interface. The presence of  salt, there- 
fore, inhibits the formation of  multi-layer convection. 
The latter case, which corresponds to S = 0 and fi < I, 
is analogous to the case of  pure water. We have also 
estimated from the plots of  the eigenfunctions of  the 
linearized problem the amount  by which the isotherm 
of maximum density in the conduction state has 
moved upward as a result of  convection. Thus, fol- 
lowing Moore  and Weiss [5], we define the penetration 
factor, 7- as the ratio of  the depth of  the main cell 
to the total depth of  the fluid layer. The amount  of  
penetration as a function of  2 and S is displayed in 
Tables 3(a) and (b). We find that 7 increases with 2 
and Sand  reaches asymptotically the value 1 whenever 
)~ ~> I or S > 0.01. Note that these results are valid 
only at the onset of  convection. For  more vigorous 
flows the nonlinearities in the governing equations 
must be included. This is done in the next section. 

4. NONLINEAR RESULTS 

We have undertaken a numerical nonlinear analysis 
of  the governing equations, equations (7a~d), and 
corresponding boundary conditions, equations (9c,d) 
and equation (12), in a cavity of  width equal to one- 
half of  one wavelength as determined from the linear 
stability analysis and height (I + 1/2). The boundary 
conditions are supplemented by conditions at the hori- 
zontal wall of the half cell, 

- :  - - 0  o n x = 0  a n d x = - - .  
x gx ~x ~c 

~16) 

Table 1. The critical Rayleigh number R~ as a function of the parameter ~ and the density ratio S 

S = 0.(1 0.00(105 0.00025 0.0005 0.005 0.025 0.05 

2 = 0.65 517 517 517 513 240 30 12 
1.0 595 590 570 548 279 42 28 
2.0 602 600 575 560 355 132 74 

Table 2. The critical wavenumber ~, as a function of the parameter 2 and the density ratio S 

S = 0.0 0.00005 0.00025 0.0005 0.005 0.025 0.05 

2 = 0.65 2.06 2.06 1.97 1.97 1.65 1.29 1.25 
1.0 2.10 2.06 2.06 1.90 1.70 1.60 1.53 
2.0 1.94 1.96 1.97 2.03 2.03 2.03 2.03 
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Fig. 3. Plots of the eigenfunctions ~, ([]), temperature 0, 
( x ) and concentration c, (0 )  for : S = 0 and 2 = 0.4 (top), 
S = 0 and 2 = 0.65 (center), S = 10 -3 and 2 = 1.0 (bottom). 

Other parameters are z = 0.0125, fl = 1 and m = 1. 

The dimensionless conservation equations are 
solved numerically utilizing the finite difference 
method. We proceed by first solving the momentum 
equation (7d) for ~k. The three terms that appear on 

Table 3. 

(a) Variation of the penetration factor ~ with the density 
ratio S for 2 = 0.65 
S: 0.0 0.0001 0.001 0.01 

: 0.712 0.744 0.783 1 

(b) Variation of the penetration factor ~ with the parameter 
2 f o r S = 0  
2: 0.4 0.5 0.65 1.0 
~, : 0.394 0.469 0.712 1 

the right hand side of  equation (7d) are used as source 
terms [19]. The equation is descretized by making use 
of  second-order accurate central difference rep- 
resentation for the spatial derivatives and the resulting 
system solved by utilizing the successive over- 
relaxation (SOR) iterative method. The iterations are 
terminated when the values of  the streamfunction 
agree to six significant digits at each grid point. These 
results are then utilized in the heat and concentrat ion 
equations, equations (7b, c), and a similar routine is 
used for 0 and c. Finally, a converged solution is 
achieved when all the dependent variables are such 
that the difference between two successive iterations 
are simultaneously less than 10 -6 . The nonlinear cal- 
culations are perfomed on a Cray-C90 computer  and 
require up to 4 h of  C P U  time for one simulation 
corresponding to a set of  values of  the parameters. 
We have noticed an increase in computat ion time with 
increases in either the Rayleigh number or the density 
ratio and we failed to obtain a converged solution for 
relatively large RT or S. 

4.1. The case 2 > l 

Figure 4 (top part) depicts streamlines for 2 = 2, 
S = 0 and three values of  the Rayleigh number. For  
this specific range of  parameters, convection takes 
place in the form of one large cell occupying the whole 
fluid layer at R = 602. As R increases from its critical 
value, we note the appearance of  a pair of  counter- 
rotating corner vortices at the warm plate. As these 
vortices gain in intensity, they occupy a larger port ion 
of  the fluid layer by squeezing the large positive cell 
and a progressive narrowing of  the bo t tom of  the 
main cell ensues. This is accompanied by a noticeable 
downward movement  of  the center of  the positive cell 
and the appearance of  another  negative cell in the 
vicinity of  the solid-liquid interface. The fluid layer 
divides into two separate regions : a strong convective 
flow in the lower part of  the layer and a weak flow 
adjacent to the solid-l iquid interface. 

The influence of  the density ratio S on the flow 
patterns is shown in the lower part  of  Fig. 4. It is seen 
that, except for the fact that the flows are less rigorous, 
the flow patterns have the same overall qualitative 
features as in the case S = 0 shown in Fig. 4(a). It is 
also noteworthy to add that, even for the case S = 0 
which corresponds to a vanishing coefficient of  solutal 
expansion, the convective fluctuations for the salt con- 
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Fig. 4. Streamfunction contours for ). = 2.0 and Rayleigh numbers ( from left to right) R = 1000, 1500 and 
2500: S = 0 (top) and S = 0.05 (bottom). Other parameters are r = 0.0125, fi = 1 and m = 1. 

cent ra t ion  still arise as a result of  the coupling between 
the tempera ture  and concent ra t ion  fields at the solid - 
liquid interface [equation (9c)]. Consequent ly .  the 
results per ta ining to the s ingle-component  liquid case 
canno t  be retrieved from our  analysis and  only a quali- 
tative compar ison with the nonl inear  results of  Moore  
and  Weiss [5] is possible. 

The influence of  the Rayleigh n u m b e r  and the den- 
sity rat io  on the steady-state dis t r ibut ions of  tem- 
perature and  concent ra t ion  are i l lustrated in Fig. 5. 
We consider two pairs of  values for Rr and S. The 
first pair  is Rs = 100 and S = 30 and  the second is 
Rs = 1100 and  S = 0.6 (about  30 &) .  In bo th  cases, 
we notice a definite tendency toward the format ion  of  
concent ra t ion  boundary  layers near  the solid liquid 
interface, the lower plate and also at the boundary  
between the main  cell and the induced vortices, and 
an a lmost  isohaline core in the rest of  the fluid region. 
The equil ibrium tempera ture  dis t r ibut ion is, however,  
only weakly distorted (the isotherms are mainly hori-  
zontal  t h roughou t  the fluid layer). 

4.2. The case ). < 1 
The plots of  streamlines tha t  are shown in Fig. 

6(a) correspond to 2 = 0.65 and  S = 0. We follow the 

evolution of  the cell pa t tern  with increasing RT in a 
box of  size 1.52 x 2.65 with Rs ranging from 1800 to 
4000 (i.e. up to 8 R~). When Rr = 1800, there is one 
large positive cell tha t  is elongated in the vertical direc- 
tion and whose center lies close to the bo t tom plate 
(the center of  the cell being a point  of  max imum vel- 
ocity). As the Rayleigh n u m b e r  is increased, the cell 
becomes less elongated and  at R -~ 3000 a counter-  
ro ta t ing cell appears  in the upper  par t  of  the fluid 
layer. Fur thermore ,  intense mot ion  is observed near  
the lower plate and  no noticeable movement  of  the 
center of  the cell is detected. 

The influence of  the solutal  effects on the cell pa t tern  
is depicted in Fig. 6(b). This pa t te rn  corresponds  to 
2 = 0.65 Rr = 100 and S ranging from 0.5 to 30. 
Initially, only one elongated positive cell occupies all 
the box. At  S-~  2, two counter - ro ta t ing  vortices 
appear  in the upper  left and lower right corners. The 
main positive cell becomes skewed to the right under  
the squeezing act ion of  these vortices. As S is fur ther  
increased, the convect ion flows that  initiate in the 
corner  vortices penetra te  the ne ighbor ing  positive cell, 
thus leading to a cell pa t tern  tha t  consists of  a flat 
positive cell tha t  is sandwiched between two negative 
cells. These negative cells are regions of  weak convec- 
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Fig. 5. Stream!unction contours, isotherms and contours of equal concentration for 2 = 2 and S = 30 
RT = 100 (top) and S = 0.6, Rx = 1100 (bottom). Other parameters are • = 0.0125, fl = 1 and m = 1. 

tion. This symmetric configuration resembles the cell 
pattern associated with an S-shaped, cubic tem- 
perature profile, and a density that varies linearly with 
temperature [6]. We postulate that further increases 
in S will lead to the formation of floating convection - 
a strongly convecting layer located in the middle of 
the fluid cell and bounded below and above by two 
relatively stable layers. 

The corresponding temperature and concentrat ion 
distributions are shown in Fig. 7 for S = 30 and 
R T =  100. We observe the appearance of con- 
centration boundary  layers at the lower plate, the 
solid-liquid interface and at the boundaries between 
the vortices. The centers of these vortices form large 
cores that are both isothermic and isohaline. 

Figure 8 shows lines of equal concentration for 
RT = 500, S = 0, 2 = 2 and three values of m. As the 
magnitude of m is increased, which corresponds to an 
increase in supercooling at the phase boundary, sharp 
changes in salt concentration are seen to develop near the 
solid-liquid interface. Here the supercooling is defined as 
the difference between the actual water temperature and 
its freezing temperature, i.e. (T-mC), so that increases 
in m lead to an increase in supercooling. The equal 
concentration contours remain primarily unchanged 
away from the solid-liquid interface, and the streamlines 

and isotherms are unaffected by changes in m. This 
figure, which corresponds to only one set of  parameters, 
does depict all possible behavior. Other values of 2 or S 
yield similar outcomes. 

5. C O N C L U D I N G  R E M A R K S  

We have analyzed in some detail the influence of 
freezing on penetrative convection in a layer of sea- 
water by adopting a B6nard-like set-up, in which a 
layer of a dilute salt-water mixture is partially sol- 
idified from above. The main  goal of this paper is to 
extend previous studies on penetrative convection in 
pure water [4, 5] to the case of seawater. This extension 
has been revealed to be a delicate one, due to the 
coupling between the concentration and temperature 
fields. This arises for two reasons ; firstly, the freezing 
temperature of seawater depends on the salt con- 
centration [equations (3)]. This dependence is 
obtained from an idealized phase diagram. Secondly, 
unlike pure water whose density is maximum near 
4°C, the temperature of maximum density of seawater 
also depends on salt content. Casting the model in 
dimensionless form has helped to isolate the relevant 
control parameters. Besides the usual thermal Ray- 
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Fig. 7. Streamfunction contours, isotherms and equal concentration contours for 2 = 0.65, RT = 100 and 
S = 30 (top) ; mean profile temperature, concentration and density (bottom). 
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Fig. 8. Equal concentration contours 
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for RT ---- 500 ,  S = 0 . 0 5 ,  ,~ = 2 and (from left to right) m = 10, 30 
and 50. 

leigh number R T and a density extremum parameter 
2 that characterize the problem of penetrative con- 
vection in pure water, two other parameters appear in 
this case: the density ratio S and the dimensionless 
liquidus slope m. Our model also incorporates the 
thermal effect of the layer of sea-ice [equation (12)]. 

The linear stability calculations successfully predict 
the wavenumber and instability threshold. It is dem- 
onstrated that stationary convection bifurcates from 

the static state in agreement with the predictions of 
Baines and Gill [14]. This is due to the fact that upon 
freezing seawater from above, a fluid parcel that is 
located in the upper part of the layer is both colder 
and saltier than one in the lower part of the layer. 
Consequently, both diffusing gradients act to de- 
stabilize the equilibrium profile and give rise to time- 
independent convection. The effects of the presence of 
salt, by way of the parameter S, are found to be 
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destabilizing. The critical wavenumbers  decrease with 
increasing S for 2 < 1, but  show a very small increase 
with S for 2 = 2. The eigensolutions of  the linearized 
problem, equat ions (14) and (15), suggest tha t  for 
S = 0 (absence of  buoyancy forces due to solutal 
effects) and )~ < 1 (the isotherm of  maximum density 
is initially placed near the warm plate), convect ion 
sets in a layer close to the lower plate and induces 
weak mot ions  in the form of  a vertical stack of one or 
more  counter - ro ta t ing  vortices whose strength 
decreases upward,  This range of  parameters  resembles 
the case of  penetrat ive convect ion in pure water  [5]. 
The generat ion of  these weak vortices occurs primarily 
by way of  viscous coupling at the isotherm of  
max imum density. Initially, this interface is located 
at the isotherm of  max imum density. The onset of  
convection,  however, is accompanied with the onset 
of  the cabbeling instabili ty which acts to move this 
interface upward [20]. 

The pr imary result of interest of  the nonl inear  cal- 
culat ions (system driven at up to 30 times critical) is 
the fact tha t  the flow pat tern  consist ing of one cell of  
intense flow near the warm plate underlying a counter-  
rota t ing cell of  weak flow in the vicinity of  the solid 
liquid interface predominates .  This is in contra-  
dist inction with the case of  pure water, wherein super- 
critical multi- layer convect ion is completely inhibited. 
Fur ther ,  we have observed the format ion  of  con- 
centra t ion boundary  layers near  the solid liquid inter- 
face, the warm plate and at the boundar ies  between 
the main positive cell and the negative induced cells. 
The centers of  the vortices form cores that  are both  
isohaline and isothermal.  The mean  profiles of tem- 
perature,  salinity and density, displayed in Fig. 7. 
show tha t  fresh and hot  water rises at one edge and  
cold and  salty water  sinks at the other,  with large 
vorticity in the center of  the fluid cell. The density 
profile shows a double  s tructure at the boundary  lay- 
ers and  a uniform dis t r ibut ion at  the center. 

The nonl inear  analysis seems to indicate that  for 
supercritical Rayleigh numbers ,  and regardless of 
other  parameter  values, the mot ion  is always gentle in 
the vicinity of  the solid liquid interface and vigorous 
in the lower par t  of  the fluid cell. Therefore,  within 
the limits of our  assumptions,  the results suggest that  
penetrat ive convect ion acts in such a way as to reduce 
the a m o u n t  of  heat  tha t  can escape to the a tmosphere  
dur ing the format ion  of  a polynya. 
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